Math Problem Statement

Define a unitary matrix $\mathbf{U}=\left[\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_N\right] \in$ $\mathbb{U}(N)$, where $\mathbb{U}(N)$ denotes the unitary group of degree $N$. $$ \mathbf{x}=\mathrm{U}[s_1,s_2,\cdots,s_N]^T $$ where $s_1,s_2,\cdots,s_N$ are independent and equally distributed but not Gaussian random variables with an expectation of 0 , and $$ \mathbb{E}\left(\left|s_n\right|^2\right)=1, \quad \forall n $$ $$ \mathbb{E}\left(s_n\right)=0, \quad \mathbb{E}\left(s_n^2\right)=0, \quad \forall n $$ $$ \mu_4 \triangleq \mathbb{E}\left(\left|s_n\right|^4\right) $$. $$ \tilde{r}_k=\mathrm{x}^H \tilde{\mathbf{J}}_k \mathrm{x}=\tilde{r}_{-k}^*, \quad k=0,1, \ldots, N-1 $$ where $\tilde{\mathbf{J}}_k$ is defined as the $k$ th periodic shift matrix, given as $$ \tilde{\mathbf{J}}_k=\left[\begin{array}{cc} 0 & \mathbf{I}_{N-k} \\ \mathbf{I}_k & 0 \end{array}\right] $$ and $$ \tilde{\mathbf{J}}_{-k}=\tilde{\mathbf{J}}_k^T=\left[\begin{array}{cc} 0 & \mathbf{I}_k \\ \mathbf{I}_{N-k} & 0 \end{array}\right] $$ $$ \mathrm{EISL}=\sum_{k=1}^{N-1} \mathbb{E}\left(\alpha^{2}_{k}\left|\tilde{r}_k\right|^2\right)=\sum_{k=1}^{N-1} \mathbb{E}\left(\alpha^{2}_{k}\left|\mathbf{s}^H \mathbf{U}^H \tilde{\mathbf{J}}_k \mathbf{U s}\right|^2\right) $$ Find the relation between $\mathrm{EISL}$ and $\left|\mathrm{U}\right|^4$

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Unitary matrices
Random variables
Expectation
Isserlis' theorem

Formulas

EISL formula
Expectation of quadratic terms

Theorems

Unitary matrix properties

Suitable Grade Level

Advanced Mathematics